Process manufacturers typically operate in data-rich environments and know their plants inside out. While they know their assets and how their resources are deployed, they are often unaware of factors contributing to optimal asset performance. Even if this information exists within the manufacturing ecosystem, the plant maintenance and operational heads don’t really know how to use it to achieve optimum plant productivity.
Studies reveal that frequent downtimes at process manufacturing plants can result in nearly $15000 per hour of lost revenue. Digitalization of the maintenance process and proactive asset performance management directly contribute to saving this cost. Prioritizing plant reliability becomes the only way to improve overall operations and mitigate unplanned downtimes.
But what is plant reliability, and what processes need to be institutionalized to achieve it? In this article, we will discuss what reliability means for manufacturing and lay out a six-step process to devise a plant reliability strategy for a manufacturing plant effectively.
What is Plant Reliability, and how can you measure it?
Any reliable system accounts for its safety and trustworthiness while ensuring minimal maintenance costs. For plant assets, reliability can depend on performance, condition, maintenance needs, and availability. An asset reliability check can be done based on factors like frequency of maintenance or repair costs, number of malfunctions, unexpected downtimes, and more.
Keeping plant’s maintenance up to the mark ensures that assets run 24/7 with fewer interruptions or unexpected delays due to frequent maintenance incidents. This leads to faster go-to-market, better output quality, employee productivity, and significantly lower operational costs or costs per unit.
Plant reliability in production can be quantitatively measured using the Overall Equipment Effectiveness (OEE). A popular metric for measuring manufacturing productivity, OEE factors in a product of availability (number of downtimes/uptime), performance (speed or run time of your processes), and quality (number of defects).
An OEE score of 100% indicates a completely reliable, dependable, and high-quality plant with maximum productivity. Therefore, calculating OEE and securing a top score should be part of your asset management’s best practices.
Six steps to creating an effective reliability plan at your plant.
Every successful plan consists of a set of clear and executable steps. And the same principle applies to achieving top-notch plant reliability as well. Without a clear, planned route, it can be hard for you to envision your end goal – optimum plant and asset reliability management. Here are the six actionable steps that are essential to executing your plan successfully:
1. Building the right team
The right team can make or break reliability goals- from top to bottom.
Effective leadership, skilled personnel, and onsite-plant operations team must be aligned with accomplishing plant reliability goals.
Achieving reliability is a team effort and a continuous improvement process. Designated team champions have to be distributed within Operations, Maintenance, and Engineering along with sufficient alignment around their common goals & individual targets. This way, every individual is well aware of their role in constantly improving the plant and understands their dependencies on the other teams. There has to be also a Reliability Leader who helps drive this initiative
2. Creating the right mindset for reliability
For a successful plan, having the right mindset for asset reliability is as important as relevant skills, processes & technical understanding.
Since achieving reliability requires continuous effort, you can try to define your target numerically & align every department’s target accordingly. This target & its deadline needs to be agreed upon by each department-operations, maintenance, engineering, and the subsequent KPIs that befall them individually.
It is critical that all teams uphold this goal as their guiding principle and implement it through individual responsibilities every day.
3. Adapting Predictive Maintenance (PdM) approach
Plant reliability is also heavily dependent on asset health & reliability. The approach towards asset reliability is centered around the plant maintenance methodology chosen.
An advanced framework like predictive maintenance alongside numerous assets and operations can speed up the process of obtaining plant reliability. By proactively anticipating flaws or anomalies within the plant and addressing them, reliability objectives can be progressively achieved.
And when you proactively work towards fixing them, you can see your maintenance costs and the dreaded plant downtimes plummet instantly. Also, by understanding what caused these failures, your teams can work towards optimizing their maintenance strategy in the future.
Comments